
 
Figure 1.  Example of cards in the game of Set 
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Abstract— This paper aims to present a procedure for real-time 

detection and recognition of the cards from the card game Set 

using computer vision techniques. Our approach to recognizing 

cards in images is done in three steps: segmenting cards from the 

image, extracting features from card images with horizontal and 

vertical lines, and card feature classification with support vector 

machine (SVM). Small number of features are extracted from 

relatively small subset of pixels to achieve real-time processing. 
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I.  INTRODUCTION 

Computer vision is a research field that aims to develop 
techniques that enable computers to see and understand the 
content of digital images in a similar way as people do [1]. The 
areas closely associated with computer vision are image 
analysis, image understanding, and image classification. At the 
current time, computer vision techniques are successfully 
applied in solving many problems in various areas such as 
medical imaging, optical character recognition, face 
recognition and biometrics, self-driving car, motion tracking 
and capture, etc. Object detection and recognition is a central 
technology in computer vision that deals with finding and 
identifying objects in digital images [2]. Object detection is a 
starting point for solving other complex problems in computer 
vision.  

In this paper object detection methods will be used to detect 
playing cards in a video sequence and to recognize Set card 
features. The method presented in [3] uses OpenCV [4] for 
image upload, card identification, image segmentation, color 
recognition, and Keras [5] model to predict the class of the 
card. The model has 92% accuracy for categorical 
classification. The method presented in [6] used the following 
steps: extract individual cards from an image, classify each 
separate image using a deep convolutional network, and find 
valid set combinations. The results are very promising and for 
some parameter combinations the set will be found in each 
image where it exists.  

In our approach detection and recognition of the cards is 
done in three stages on a live video feed using multiple 
machine learning classifiers. Features are extracted from a very 
limited number of pixels in the image to save processing time 
but still, classifiers have high accuracy on the test dataset: 97% 
– 100%. 

II. THE GAME OF SET 

A. Cards of the Game 

Set is a real-time card game whose deck consists of 81 
unique cards that vary in four features. Each feature can vary 
across three possibilities as follows: color (red, purple, or 
green), shape (oval, squiggle, or diamond), number of shapes 
(one, two, or three), and shading (solid, striped, or outline). 
Each possible feature combination occurs just once in the deck. 
An example of cards from the deck can be seen in Fig. 1. 

B. Rules of the Game 

The object of the game is to find a set among cards that 
have been placed face-up on the table and arranged in a grid. A 
set consists of three cards in which each of the cards’ features 
are all the same or are all different on each card. E.g., the 
number of shapes must be either same on all three cards or 
different on each of the three cards, and so on for other card 
features. Fig. 1 shows a combination of cards that form a set 
where all card features are different. 

The game can be played by two or more players who are all 
trying to identify sets. The game starts with 12 cards dealt from 
the deck. When a player finds a combination of cards that 
forms a set, he must call it before collecting the cards from the 
table. Then, three new cards from the deck are dealt onto the 
table. Each time player calls an incorrect set, he must return 
three cards to the deck if he has any. If none of the players can 
find a set among dealt cards, three more cards are added to the 
table, and so on. The game ends when the deck is depleted, and 
players cannot find a set in the remaining cards. The player 
with the most cards collected is the winner [7]. 

C. The problem of Real-Time Detection and Recognition 

Card detection and recognition is done on the live video 
feed from the camera. The developed procedure can detect and 
recognize an unlimited number of cards in the video frame. 
Since the aim is to produce real-time recognition, then card 
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detection, feature extraction, and classification must be 
sufficiently fast.  

For the most part of the game of Set, there would be 12 or 
more cards dealt. For this reason, feature extraction is done on 
a relatively limited number of pixels in the image which can 
reduce inference accuracy and robustness but it will boost the 
performance which is crucial for the real-time system. 

III. CARD DETECTION AND RECOGNITION 

Detection and recognition of the cards is done in three 
stages: segmenting the cards from the image, feature extraction 
from segmented parts, and card feature inference. For every of 
four card features, one classifier is trained. Also, one additional 
classifier is trained to determine if segmented part of the image 
represents a card from the game of Set.  

A. Card Segmentation 

The central technique used in card segmentation is finding 
contours with the OpenCV framework. Contours represent a 
curve joining all the continuous points along the boundary, 
having the same color or intensity. OpenCV contour finding 
works on grayscale images where objects that should be 
detected are white and the background is black [8]. Therefore, 
to detect objects in an image, a thresholding or edge detection 
operation like Canny is needed to get grayscale image.  

Card segmentation is done in four stages: edge detection, 
finding contours, approximating contours with quadrangles, 
and perspective transformation. For edge detection (Fig. 2b), 
Canny method is used with hysteresis thresholding parameters 
30 and 150. Contour finding (Fig. 2c) uses parameters 
RETR_EXTERNAL and CHAIN_APPROX_SIMPLE. The first 
parameter indicates that only external contours of objects are 
retrieved. This speeds up the process of finding contours since 
only the outer contours of the cards are needed. The second 
parameter is explained in [8] and simplifies contour analysis. 
To filter contours that do not represent cards, two heuristics are 

used: contour surface must be above 5000 px2 to filter out very 
small objects or noise, and contour curve must approximately 
look like a quadrangle. Contours are approximated with closed 
polygons using OpenCV function approxPolyDP [9]. 
Accuracy is set to 0.07·arLen, where arLen represents contour 
perimeter length. Then, all contours that do not approximate 
quadrangles are filtered out. The result of heuristic filtering can 
be seen in Fig. 2d. The final step in card segmentation is 
perspective transform. Each quadrangle is transformed to an 
image of dimensions 450x300 px using OpenCV function 
warpPerspective. 

B. Cards Dataset 

To train classifiers, a representative dataset is needed. 
Using the card segmentation procedure described in section A, 
a dataset consisting of cards from the game of Set was created. 
The dataset contains 935 images. Each card from the deck 
appears at least 10 times in the dataset. Images were captured 
in various lighting conditions, from different angles, and at 
different camera distances. Fig. 3 shows 30 randomly selected 
images from the dataset. 

C. Scanlines 

For each classifier, a uniform way of extracting features is 
used. Lines of pixels, called scanlines, are extracted from the 
segmented image. There are horizontal and vertical scanlines. 
Horizontal lines are placed on values 126, 150, and 174 of the 
y-axis. Vertical scanlines are placed on 157 and 255 values of 
the x-axis. All features are extracted from scanline pixels. Fig. 
4 shows both vertical and horizontal scanlines and their order. 

D. Segmented Image Classification 

Card segmentation procedure and its filtering heuristic 
passes through all objects in the shape of quadrangles and 
cannot alone filter out objects that are not cards from the game 
of Set. For this reason, a two-layered fully connected neural 
network (FCNN) is used as the classifier. Input into FCNN are 
pixels from second horizontal scanline in HSV color space. 

 
a) Input image 

 
b) Canny edge detection 

 
c) Contours 

 
d) Approximated quadrangles  

 
e) Perspective transform 

Figure 2. Card segmentation example 

 
Figure 3. Cards dataset 

 

Figure 4. Horizontal and vertical scanlines 



 
Figure 8. Shape classifier 

 

Figure 9. Most representative color of the second horizontal scanline 

 

 

Figure 10. Most representative color 
plot on the dataset 

Figure 11. Color classifier 

 

The reasoning for using HSV instead of RGB is that FCNN can 
directly, rather than implicitly, use H and V channels which 
determine pixels' hue and brightness. The training dataset 
consists of: 

1. Images from the dataset described in section B 
annotated as true (935 images). 

2. Again, images from the dataset described in 
section B, but rotated 90° and rescaled to 
dimensions 450x300 (935 images). The reason is 
to have images that look similar to cards but are 
annotated false. 

3. 68 images that are not cards of the game of Set. 
4. 100 generated images of uniform noise. 
5. 100 generated images of uniform color. 

There is also a test dataset consisting of images of cards from 
the game of Set downloaded from the open-source project1 (81 
images) and generated images of uniform noise and uniform 
color (100 + 100 images). 

FCNN was trained with Adam [10]. The input layer 
consists of 3·450=1350 neurons. The first layer has 500, and 
the second 200 neurons. ReLu activation function was used. 
Output is one neuron with the sigmoid function representing 
the probability of the input image being a card of the game of 
Set. Mini-batch of size 20 was used with dataset shuffling at 
every epochs’ end. Cross-entropy was used as a loss function. 

E. Number of Shapes Classifier 

Feature called hit position is used for the number of shapes 
classifier. Hit position is the normalized position of first non-
white pixel on second horizontal scanline (Fig. 5). Hit position 
plot on the dataset can be seen in Fig. 6 alongside the result of 
training SVM classifier with linear kernel. To determine hit 

                                                           
1 
 https://github.com/nicolashahn/set-solver/tree/master/image-

data/all-cards/labeled 

position, Gaussian adaptive thresholding was used with width 5 
and threshold parameter 2. Adaptive thresholding was used 
rather than fixed because of non-uniform lighting conditions 
that can occur in the scene. 

F. Shape Classifier 

For shape classification, distances between hit positions of 
different scanlines are used. Let hit positions of horizontal 
scanlines be a, b, and c (Fig. 7). Let l1=a-b and l2=c-b. Pair 
(l1,l2) is the feature used for shape classification. Fig. 8 shows 
(l1,l2) plot on the dataset alongside decision boundary for the 
SVM classifier with the polynomial kernel of degree 3.  

G. Color Classifier 

RGB pixel chosen with heuristic from the second horizontal 
scanline is used as a feature for the color classifier. The 
heuristic is choosing a pixel with the most representative color 
(Fig. 9). Firstly, pixels that are considered are the ones that 
pass adaptive threshold explained in section E. Then, pixel 
with the highest saturation is chosen based on HSV values. 
Often, dark pixels can have high saturation, and determining 
hue from dark pixels is more difficult than from bright ones. 
Therefore, only pixels that have the value of channel V higher 
than 29 are considered, except in cases where none of the 
pixels values are higher than 29. Fig. 10 shows the plot of the 

 
Figure 5. Hit position 

 

Figure 6. Number of shapes classfier 

 

Figure 7. Hit positions for different shapes 

 



 
Figure 12. Fill classifier 

RGB values of the most representative colors of cards in the 
dataset. SVM with the polynomial kernel of degree 5 was used 
as the classifier. The decision boundary for the fixed value 
B=127 can be seen in Fig. 11. 

H. Fill Classifier 

Only the fill classifier uses vertical scanlines for feature 
extraction.  Cards with two shapes use first vertical scanline, 
and cards with one or three shapes use second vertical scanline. 
Because of this, the number of shapes must be inferenced 
before continuing to fill classification.  

First, scanline pixels are color corrected by transforming 

every pixel with a diagonal matrix whose values are 
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, where ��, 
�, and �� are RGB values of the brightest pixel 

in the scanline. Then, features are extracted from the 30 pixels 
around the center of the vertical scanlines.  Considering pixels 
are in HSV color space, let �̅ be the mean value of pixels’ S 
channel, and let �̅ be the mean value of the V channel. The pair 
��̅, �̅� is the feature used for the fill classifier. Fig. 12 shows the 
plot of the feature on the dataset alongside the decision 
boundary of the SVM classifier with the RBF kernel. 

IV. RESULTS 

The accuracy of the classifier that determines if segmented 
part is the card from the game of Set is 99.67% on the training 
dataset and 100% on the test dataset. Even though the accuracy 
score is high on the train and test datasets for this classifier, its 
accuracy in the real world was not as high. The classifier has a 
bias towards classifying objects as non-cards, but it works well 
when cards are close enough to the camera and when the cards 
are positioned horizontally. 

The performance of the card feature classifiers is dependent 
on the underlying algorithms of image processing and feature 
extraction. That is why the test dataset wasn’t created to fine-
tune the parameters of the machine learning classifiers. The 
accuracy scores of the classifiers are given in table 1. 

All the card feature classifiers give high accuracy in a real-
world application. The number of shapes classifier gives the 
best performance of all classifiers. The shape classifier is very 
susceptible to noise and slight errors during card segmentation. 
Color classifier best performs under good lighting conditions. 
In dark scenes, it has a bias towards classifying cards as purple 
because that is the darkest color out of the three. Fill classifier 
has problems distinguishing outline and stripes fill when cards 
are far away from the camera. The reason is low resolution of 
the segmented image making the striped fill look like outline 
fill. This can also be seen in Fig. 12 where outline and stripes 
fill form one cluster. All classifiers and feature extraction 
techniques are simple and fast enough for real-time usage. 

TABLE I.  CLASSIFIER ACCURACY ON THE DATASET  

Classifier Accuracy 

Number of shapes 100% 

Shape 97% 

Color 99.79% 

Fill 99.36% 

V. CONCLUSION 

This paper presents a procedure for detecting and 
recognizing the cards from the game of Set in real-time video 
feed using classic computer vision techniques – namely, image 
processing. Five classifiers are presented. Four for each of the 
cards’ features and one for classifying segmented parts of the 
image.  It was showed how using a very limited number of 
pixels from the image classifiers can produce impressive 
accuracy and speed.  

Classic computer vision techniques for object detection and 
recognition lack in robustness compared to their deep learning 
counterparts. Therefore, it would be interesting to explore deep 
learning solutions for real-time card recognition. That said, 
classifiers presented in this paper can increase their robustness 
by extending the dataset and exploring more interesting image 
processing techniques. Namely, the neural network presented 
in this paper would greatly benefit from a larger and more 
varied dataset of Set cards and non-set cards. 
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